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The spin glass random matrix ensemble: some inequalities for 
a new matrix norm 
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Physics Laboratory, H C Brsted Institute, University of Copenhagen, Universitetsparken 5, 
D K  2100 Copenhagen 0, Denmark 

Received 12 May 1987, in final form 20 October 1987 

Abstract. i n  spin glasses with quenched position randomness the interaction matrix J = {J , , }  
generates a random matrix ensemble, distinguished by correlations between the matrix 
elements, as compared to  simplified models with independent J,,  corresponding to more 
conventional random matrix ensembles. Hardly anything seems to be known about the 
former ensemble, which is the more realistic one. There are reasons to believe that the 
unconventional matrix norm 

may be of special significance. Several inequalities are proved for this norm and its ensemble 
mean (liJII). In particular, i t  is shown that I1JI /a /det(J) /""  and ( l l J I 1 ) "  1/2ew,. where for 
a continuous ensemble eigenvalue density w ( x j  = w( - x )  of spectral range : X I  G A:  w, = 
m a x ( w ( x ) , l / h ) .  The new norm is also related by inequalities to the ordinary Euclidean 
norm. These results indicate that the present matrix ensemble has several remarkable 
features, notably a sharp peak in w ( x j  at x = 0 ,  which appear to rule out a conventional 
Wigner density w ( x ) .  A discussion is given of related topics, such as quenched against 
ergodic randomness, matrix ergodicity (i.e. n 3 w),  spin glass c scaling and space dilatation. 

Real spin glass systems have a definite space configuration of spin-carrying atoms, in 
which a random distribution of positions is obtained by rapid quenching of a molten 
mixture of these atoms with non-magnetic atoms. When the system is a metallic alloy, 
which is the case with the majority of the many systems that have been experimentally 
investigated, the spins can interact with each other at long range by means of the R K K Y  

indirect exchange mechanism. Let the spin operators belonging to two sites, i and J, 

indicating the set of quenched random positions, be si and 5,. Then the Hamiltonian 
is 

(1) 

In a space of three dimensions the interaction constants { J j J }  are determined by the 
distances { R , j }  between the spin sites and has the form 

W = -E J ,]S i  * S I .  
iJ 

where a, is an atomic length scale and Jo is an energy scale. This interaction has been 
investigated in considerable mathematical detail (Ruderman and Kittel 1954, Kasuya 
1956, Yosida 1957, Kaneyoshi 1975, Fischer and Klein 1975, Larsen 1980, 1981, 1985, 
1987) and is known to be the cause of the spin glass effects that are universally observed 
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in these systems. The randomness in position translates into a random sign of the 
different exchange couplings J,,. The distribution of magnitudes of the J, ,  depends on 
the fractional concentration c = N,/ N ,  of spin-carrying atoms, where N,  is the number 
of spins and  N ,  is the number of both kinds of atoms, because of the distance 
dependence in (2). 

The statistical mechanics of the spin glass category remains an  unsolved problem. 
Considerable theoretical effort has recently been directed towards simplified models, 
in which the spins are frequently replaced by classical binary variables (Ising spins) 
on a filled lattice ( c  = l ) ,  and where the interactions {J, ,}  are random variables with 
some simplified a priori distribution. Although such models definitely capture much 
of the essence of the problem, it is not known to what extent the results that have been 
obtained apply to the original model (1) and (2) .  About the statistical mechanics of 
the latter, very little is known with any degree of mathematical certainty. 

One of the earliest, and  most well established, experimental results in the real 
metallic spin glass systems is the so-called c scaling (Soulette and Tournier 1969, Liu 
and  Smith 1975). Let M be some observable quantity, such as the magnetisation. 
Originally the c scaling between different spin glass systems, with the same atomic 
constitution but different concentrations c, was cast in the form 

M(c ,  T, H )  = c y (  T/c, H / c )  (3) 
where T is the temperature, H the magnetic field and  z = 0 for an intensive quantity 
or z = 1 for an  extensive one. Subsequently it has been observed that the scaling is 
significantly improved if, instead of c, one scales with a c-dependent energy scale, 
g (c ) ,  i.e. 

M(c, H)=cZF(kBT/g (c ) ,  FBH/g(C))  (4) 
where g (c )  is taken from the data, say in the form of a characteristic freezing tem- 
perature, kBTo (Larsen 1978). This allows for deviations from strict linearity (g(c)Fc c), 
the most significant cause being imperfections in the electronic medium which transmits 
the R K K Y  interaction (2). This is known to supply the ideal range dependence in (2) 
with an  exponential damping factor, restricting the range to distances inside an  
electronic mean free path. While this does not affect the scaling of the spin glass 
effects, it modifies g (c )  in a significant way. Possibly this damping effect is the most 
direct evidence for the realistic character of the RKKY-based model?. 

As the scaling suggests, presuming it reflects an  essential aspect of the statistical 
mechanics of the spin glass model (1) and (21, the energy scale g( c) must be a functional 
of the interaction matrix J = {Ju  I J,, = 0, V i }  (which functional may or may not depend 
on the spin magnitude). Even as considered apart from the unsolved statistical 
mechanics problem, the consideration of such functionals raises some interesting 
questions. We shall, for simplicity, assume that the random sign variation in J 
disqualifies linear functionals. It might be thought straightforward to pick a second- 
order one, such as the Hilbert-Schmidt norm (divided by N:'2)  

t Because doubts have recently been expressed in the literature as to whether the R K K Y  interaction can 
become modified so as to have only a finite range, a discussion of this point has been requested. Although 
the question has no direct implications for the present work, i t  belongs to the context in  which it is situated. 
A brief discussion in general terms is provided in appendix 3, but for details we must refer the interested 
reader to the literature. 



Spin glass random matrix ensemble 1373 

But, as we have pointed out, because of the quenched randomness inherent in the 
matrix J at c < 1, this is not so; the functionals depend in a significantly different way 
on c (Larsen 1977, 1986b). An alternative choice is 

It is easy to see that this is also a matrix norm?. In the following we establish two 
chains of inequalities pertaining to these norms. The second of these concerns the 
averages on ensembles of random matrices, such as are generated, for instance, when 
different J are created on the basis of different quenched random spin configurations. 
These results are then to be applied to the specific c-scaling question arising in the 
context of the real spin glass systems and establish a rigorous background for some 
approximate and numerical estimates that have been proposed (Larsen 1977, 1987, 
Riess and Ron 1973). 

Theorem 1. Let A = { a , }  be a Hermitian n x n matrix over the complex number field, 
and let det(A) be its determinant. Let two norms, referred to as the ‘ergodic’ and the 
‘quenched’, be defined by 

Then 

\/All ergodic 1 1  All quenched a /det(A)I”“. (8) 

The left-hand equality applies if and only if all x,  = ( Z J  lay12)1’2 are equal and the 
right-hand equality applies if and only if all x,  are equal and A’A is diagonal. 

ProoJ: Let 

Then the left-hand inequality follows from the convexity of x 2 ,  with equality iff all xi 
are equal. By the geometric-mean/arithmetic-mean inequality (Beckenbach and 
Bellman 1983) then 

We thus have 

where the last step is the Hadamard inequality (Marcus and Minc 1964). The left-hand 
equality applies iff all x,  are equal and the Hadamard inequality has equality iff either 
A+A is diagonal or A has a zero column. In the latter case x,  = 0 for some i, so to 
have both equalities requires that x,  = 0 for all i and A = 0. 

See appendix 2 
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The reason for the names ‘ergodic’ and ‘quenched’ derives from the spin glass context 
(Larsen 1977, 1986b). It may be supposed, at least for the purpose of a qualitative 
discussion, that the long-range interactions impress on each spin site, say i ,  a fluctuating 
magnetic field, due to the influences from all the other spins, j # i ,  combined. If the 
field averages to zero, either because of spin fluctuations-or due 
in J,  or both, one can presume that the magnitude of such a 
obtained from the local sum of squares: 

In this picture xi  is the magnitude of the interaction energy on a 
when all spins remain at fixed positions, these energies would, 

to the random signs 
field energy can be 

specific site i. Thus, 
on average over the 

definite and unique configuration of positions which gives rise to the matrix J ,  amount 
to 

On the other hand, if one were to suppose that the spin i moved about among the 
other spins in an ergodic manner, then the fluctuations would derive from the local 
xf in a variety of locations. As it is assumed that the quenched configurations are 
random, the ergodic interaction energy average could be obtained from the variance 
sum ( l / N , )  Z,  xf and would become 

Whether or not such explanations, or approximate solutions leading to such esti- 
mates, would be borne out by the exact solution of the statistical mechanics of the 
spin glass models, theorem 1 shows that these two estimates of the energy scale g ( c )  
coincide if and only if all locations have the same x,. As we have emphasised, this is 
not the case in a quenched random configuration with c < 1. However, the simplified 
models referred to above may represent situations where the sites are equivalent. In 
the model of Edwards and Anderson (1975) there are spins on every site in a lattice 
and the probability distribution of each J,, is the same, with i and j being lattice 
neighbours. In the model of Sherrington and Kirkpatrick (1975) the spins are also on 
the sites of a regular lattice, while the interaction is long range, but has the same 
probability distribution for each pair Jo.  These models may therefore correspond to 
a situation in which the left-hand equality in (8)  applies. 

In order to evaluate the ergodic norm (5) one can take advantage of the position 
pair correlation function: p (  r )  = 3 r 2 / (  R 3  - a i ) ,  where, for a,,< r < R, p (  I )  d r  is the 
probability that a pair ( i , j )  has a distance in the interval [ r l r + d r ]  and where R is 
the radius of a spherical volume containing N ,  sites each occupying a volume 477ai/3, 
among which at random N, = cN, sites carry a spin. With (2) then 

Cosy?) ‘ I 2  
IIJ I/ ergodic -$ (3 cJ t  I,‘ dt  7) = k&Jo (9) 

for N, = ( R / u , ) ~ - $ ~ ,  where k = [ r r+$(l  -cos 2-sin 2) -2 Si(2)]”* =0.429 1 8 . .  . . 
In the c scaling (4) the c dependence of the energy scale g ( c )  is much closer to 

the linear one of (3) than to the & of this estimate. Unfortunately, there is no analogous 
way to evaluate the quenched norm IIJIIquenched, which appears to be a more likely 
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candidate, by the inequality (8) ,  and particularly as c<< for c<< 1. I t  would be of 
interest if one could evaluate the determinant of J at the lower bound. At present, we 
are not aware of any way to do this for a given J of the kind we are considering here. 
An approximate procedure has been proposed (Larsen 1977, 1986a, b),  by means of 
which one gets 

I / J l lquenched  c(- ln  c ) ” 2 J 0  (10) 

which is very close to the observed g(c) ,  and it also quite accurately reacts to the 
damping mentioned above in the same way as is observed. This enhances the interest 
one may associate with the quenched norm and it would be desirable to acquire further 
rigorous results for it. 

To exhibit the nature of the problem this poses, we shall obtain another inequality 
which pertains to ensembles of random matrices. 

Theorem 2. Let J = { J , }  be a member of an ensemble of real symmetric n x n matices, 
in which the ensemble mean of each matrix element vanishes: (J,,) = 0 for all i and j ,  
and where ( J t )  = 8’ for all elements. The elements in a given J need not be statistically 
independent. If, for p = 1 , 2 , .  . . , (( l /n )Tr(JP))+  5 dx w(x)xp with probability 1 for 
n + m ,  and represent the central order-p moments of a continuous spectral density 
w ( x )  = w ( - x ) ,  where w ( x )  dx is the probability that an eigenvalue of J in the ensemble 
is in the interval [x lx+dx] ,  and if w(x)=O for IxlzA,  then the ensemble mean of 
the ergodic and quenched norms satisfy the inequalities 

ss (IlJllergodic) ( / I J l / q u e n c h e d )  1/2ewm 

where 2e = 5.436 56.  . . and w, = maxl.x,,,(w(x), I / A ) .  

Roo$ By the ensemble mean value ( ) we mean 

for sufficiently large matrix sets {JK lK = 1,2, . . . , A“}, in the usual way. By the concavity 
of J x  

which proves the left-hand inequality. The middle one follows from theorem 1. For 
the right-hand one we need ( /det(J) /“) .  Let IJI be ( j J ) ” 2 .  Then by the identity 
/det(J)I = exp(Tr(lnlJ1)) and the convexity of exp(x) we have 

(/det(J)I”“) = (exp[ (1/ n)Tr(lnJJl)]) 3 exp((’l/ n)Tr(lnJJI)). 

Since, by the standard assumptions, with probability 1 the eigenvalues {A,(J) I a = 
1 , 2 , .  . . , n} belong to a finite interval [-AIAI, one can scale iAu(J)I with A in order to 
have 

Aexp((l/n) c ln(lAu(J)l/A)). 
cl 

The possibility of zero eigenvalues of some J K  in the ensemble is automatically taken 
care of by the determinant/trace identity. The ln(lAa(J)l/A) has a convergent power 
series expansion in the range where w(x) may have support. By the standard definition 
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(Wigner 1955, 1958, Arnold 1967, Edwards and Jones 1976) of w(x) in terms of the 
order-p moments, given by (( l /n)Tr(JP)) ,  we then have 

Finally we can establish a lower bound for the integral by means of the inequality of 
Steffensen (Beckenbach and Bellman 1983). One has, with G(x) = Aw(Ax) = G(-x) 
and G,=maxjxl,,(G(x), 1) = Aw,, that 

0 
exp( -2 [ '  dx G(x)(-ln(x)) 

where 

1 '  
X I = ,  lo d x  G(x)  = 1/2Gm. 

Wm 

The integral at the lower bound equals 1/2eGm. By the other Steffensen inequality, 
the integral (12) does not exceed 2/ew,. 

Let us first consider what this result implies for those ensembles in which the matrix 
elements J,, are independent random variables (Wigner 1955, 1958, Arnold 1967, 
Edwards and Jones 1976, Mehta 1967, Brody er a1 1981). In this case one has the 
Wigner semicircle 

in 1x1 s A. (13) 
2 

T A  
w ( x ) = - [ ~  - ( x / A ) ~ ] ' / ~  

For large n the range A increases relatively slowly: 

A = 2&6. (14) 

The exact lower bound is 

1 A exp(: Io' dx( 1 - x2)'l2 In x = A/2&. 

Our lower bound from (1 1) is A/2e and the upper bound for this integral is 2Ale. We 
thus find that (Wigner density) 

In the ensemble where J is defined by (2) for quenched random positions one may 
look at the distribution of a definite Jv .  The spin pair indicated will turn out to be at 
distances, in the different J ,  which are distributed according to the pair correlation 
function p (  r ) .  It is emphasised that this is entirely a result of the ensemble formation. 
The same calculation which gave (9) above then gives 

for N ,  >> 1. If one were to assume that the Wigner density (13) would apply to this 
ensemble, despite the fact that the elements of J are not independent, then (as Ji,  = 0 
is of no consequence when n = N,  >> 1) one should find that 
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with both ensemble averages of the norms being essentially &JO. As regards the 
ergodic norm, the ensemble averaging makes no difference, as expected. On the other 
hand, the ensemble average appears to have a profound influence on the quenched 
norm if the assumption of the Wigner density holds. 

In the derivation of the Wigner semicircular eigenvalue density it is assumed that 
the elements of J are independent random variables or  it is a consequence of other 
assumptions inherent in the definition of the ensemble (Wigner 1955, 1958, Arnold 
1967, Edwards and Jones 1976, Mehta 1967, Brody et a1 1981). Of course, this in itself 
does not rule out the Wigner density in ensembles where the independence is not 
perfect, as in the present case. But hardly anything seems to be known about such 
ensembles. 

Apart from the evidence referred to above, there exist two numerical studies, to 
be discussed below, which indicate that the quenched norm has a c dependence 
essentially as in (10). At c<< 1 it falls orders of magnitude below the questionable 
lower bound in (18). One would therefore conclude that some modification of the 
Wigner density has to take place. The second moment of w ( x )  is known to be 
( ( l /n)Tr(J*))  = ((IJ((frgodlc) = (k&J,)* from (9). Most likely, therefore, a comparatively 
sharp peak exists in w(x) at x = 0 (which is not unheard of (Mehta 1967, Brody et a1 
1981)) to invoke w, in the lower bound in (11) and  pushes it down to a dependence 
which accommodates the nearly linear c scaling of ( /IJllquenched). To compensate, w(x) 
would then need wings exceeding the spectral range of the Wigner density. These 
indications would seem to make the present matrix ensemble an  interesting object for 
further study. 

Freudenhammer (1977) reported the c dependence of the largest eigenvalue, 
averaged over 10 samples of J with N,= 216, and similarly for the eigenvalue h , ,4 (J ) .  
At low c the largest eigenvalue is -co3,  but the middle one nearly linear, as in (10). 
Both findings are consistent with the peak-and-wing picture sketched above. 

In a careful numerical study Lauszus (1983) evaluated the ensemble mean of the 
quenched norm: (IIJ 11 quenched), for systems with N,  as large as computationally feasible 
( u p  to N,  = 500 at c = and to compensate for boundary effects, which is imperative 
with the infinite range of (2), these objects for the i sum were embedded in a cubic 
shell holding 26 times N,  spins whose influences over the boundary was taken into 
account). The results are presented in Larsen (1986b, figure 2). Although the distribu- 
tion of /IJ//quenched over the ensemble is strongly skewed and broadened at finite N,, 
due to the strong distance dependence in ( 2 )  and close pairs ( i , j ) ,  a statistic (-400 
samples at  each c )  was obtained sufficient to demonstrate with confidence that the c 
dependence of the ensemble mean is incompatible with A. It could even be shown 
that a linear c dependence is also ruled out, with confidence, in favour of a weak 
scaling correction consistent with the logarithmic one in (10). In  this conclusion the 
numerical evidence agrees with a large body of experimental data obtained over the 
years (Larsen 1978). 

Let x, = (I;,,,,, J:)”’ be the set of N ,  local quantities contained in a given matrix 
J .  These {x,} vary randomly over the ensemble, but in a correlated fashion, which 
represents the interdependence of the matrix elements {Jv}. Thus again 

A question of importance in the theory of random matrix ensembles is whether the 
individual member matrices are ‘ergodic’, in the sense that almost every member in 
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the limit N ,  + CC displays the same features as the ensemble mean (Mehta 1967, Brody 
et a1 1981). For the simpler ensembles this is known to be the case for the eigenvalue 
density w ( x ) ,  level spacing distributions, etc. In the present ensemble it is by no means 
a trivial question, due to the correlations between the local { x , } .  It is not known if 
this ‘matrix ergodicity’ or ‘matrix self-averaging’ (which, of course, must not be confused 
with the spin-position ergodicity we have discussed above) holds for the eigenvalue 
density w ( x ) .  In fact, it would seem preferable to have a proof that w ( x )  exists at all. 

However, with respect to IIJ 11 quenched the numerical investigation (Lauszus 1983) 
gave results which can be taken as evidence for the ‘matrix ergodicity’ or ‘self-averaging’ 
of this quantity. The confidence limits for the distribution of I/ J / /  quenched decrease with 
N , ,  to a good approximation as N;3’4. It may therefore be assumed that, with 
probability 1 ,  as N, + 00, 

1 I 

where it has been used that the marginal distributions of each x,  on the matrix ensemble, 
obtained from the joint distribution of the correlated {x,}, are identical by construction 
and have ensemble mean equal to ( x , ) .  Thus for sufficiently large N ,  with probability 1 

IIJIIquenched ‘ (IIJ/lquenched) = ( x r ) .  ( 2 0 )  

A spin with a close neighbour will have an  x,  in excess of Jo cos( l ) ,  whereas one 
with a nearest neighbour at the mean nearest-neighbour distance, r / a o  = c - ” ~ ,  will 
have x ,  - cJ,. In each J there are, on average, Nsc spins in close pairs, so that in the 
sum ( 1 /  N , )  C, x, they contribute about as much as all the rest. They would also account 
for the strongest correlations between the { x , } .  When Nsc> 1 the close pairs should 
make the spectral range of each J exceed 2 max,,, IJ,,l = 2J0.  This in itself is at  variance 
with the conclusion (Ullah 1983), which holds for the ensembles with independent 
matrix elements, that there are essentially no eigenvalues outside the Wigner semicircle. 
If the present ensemble had a Wigner w ( x )  its range would be given by (14) and such 
large eigenvalues would have to be rare. From the GerSgorin theorem (Marcus and  
Minc 1964) the upper bound on the largest eigenvalue is max, C, lJ,,l, which would be 
of the same order of magnitude with respect to c. One cannot assert, without a detailed 
investigation, whether these far eigenvalues carry any weight in the single eigenvalues 
probability density w ( x ) ,  as N , + a  Let us assume that they imply A-J,. Then the 
upper bound in ( l l ) ,  together with (171,  tells us that w , z  (2ek&Jo)-’. Consequently, 
if we take it for granted that a continuous w ( x )  exists, we must have w ,  = max w ( x ) ,  
unlike the Wigner case where w ,  = l / A .  Under these conditions theorem 2 thus implies 
that 

From what was inferred above about the spectrum of a typical J ,  it is possible to 
foresee that a peak ofthis size, and with a corresponding width of the order (IIJIIquenched), 
exists in w ( x )  at x = O .  

To evaluate the c dependence of I/Jllergodlc it was possible to use the position pair 
correlation function. There is no similarly obvious way to evaluate (x,) in order to 
estimate jlJ/lquenched. If one were to use the pair correlation function to handle the j 
sum, he would in fact be calculating the ergodic norm, not the quenched one (Larsen 
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1977, 1986b). The double sum (1/ N,) E,%, . . . in the ergodic norm simulates position 
ergodicity because of the original randomness in the independent positions. Neverthe- 
less, each spin sits in a definite and unique environment, represented by its x , .  These 
{ x ~ }  are all fixed, by quenching, and different, by position randomness. Therefore the 
j sum pertaining to a given site i is not self-averaging (Anderson 1978), due to the 
selection of a definite site i to start with. Thus no average is involved in a given x,. 
In this respect quenched randomness defeats conventional statistical reasoning. At 
present there are no standard procedures available to replace it. 

In the following we present a simple way in which the estimate (10) can be obtained 
from a qualitative argument. It should be emphasised that the procedure is based on 
physical reasoning, It was originally introduced because of its remarkable ability to 
account for experimental c dependences, etc. The possibility that it may be a good 
approximation to the quenched norm is indicated by its agreement with numerical 
computation (Lauszus 1983). It operates with a concept, that of the ‘typical neighbour 
density’, which has no precedent. With respect to the quenched norm the position is 
that the only estimate we have of its c dependence is ( l o ) ,  which is motivated by 
physical considerations. If the latter eventually turns out to represent the correct c 
dependence of the quenched norm, then this norm probably is the energy scale g(c). 
If  not, (10) may merely be a good approximation to the norm and the norm a good 
approximation to g(c). 

The indication taken from (20) is that probabilistic concepts may still be of relevance, 
as long as they pertain to the imaginary matrix ensemble. The ‘matrix ergodicity’ 
which is then invoked has no physical counterpart (Anderson 1978). As usual, what 
is implied is the expectation that, with probability I ,  any given actual J with sufficiently 
large N, will display features that may be inferred from the J ensemble (Mehta 1967, 
Brody et a1 1981). 

Let the N,  atomic sites be ordered in a sequence, indicated by k = 1,2,. . . , N,t,  
of never-decreasing distance from the centre of the volume they are embedded in. 
Eventually N, + 03, with c constant. For tractability we consider an  interaction J (  R,,) 
of the form: Jk = * J o / k ,  with site i as centre and  site j at distance r / a o  = k i ’ 3 .  Let the 
‘typical neighbour density’ be a set of weights { p i p ’ } ,  such that Z ~ A ,  p i p ’ =  N,- 1 at 
N ,  >> 1 ,  and for which 

\ 112 

Defined in this way the typical neighbour density is a property of the matrix ensemble, 
but one which is to be regarded as ‘typical’ of the sites i in almost all member matrices J. 

An analogous construction to handle the double sum (1/ N,) X , J  J (  R,)’ would be 
p(ke’ = c for all k, the discrete version of the pair correlation function, which lets the 
probability that a site k counts as a spin equal to c for all sites. 

We estimate that in the quenched environment a site counts as a spin with probability 
c too, but only on the condition that it is not the first spin site encountered on the 
way from the central site k = 1 .  The first spin should be i and be excluded from the 
j sum. Thus 

This typical neighbour density has a lacuna around the central site, corresponding to 
the fact that the majority of spins i have no spins j close by. The factor [ ] is the 

+The index k is not to be confused with the constant k in (9). of course 

p:“ ’ :=  c[ 1 - ( 1  - c)”-’]. (23) 
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probability that not all sites up to and including site number k - 1 have no spin. The 
lacuna excludes exactly one spin: c E:=, (1 - c ) ~ - ’  = 1, representing the central spin i ,  
and is simply the waiting-time distribution for the first spin to appear. The idea is 
that, in the quenched environment, the lacuna around a given spin i never gets filled 
by spins flowing in from infinity, nor by any itineracy of spin i, as in the average 
environment. The present typical neighbour density is a discrete version of the con- 
tinuous density which results from the argument first proposed by Riess and Ron (1973). 

By means of standard relations for the Euler dilogarithm L2( c )  = E:=’ c k /  k 2  one 
then finds 

For c < 1 we get 

( x i )  - do( - K  - In c )”*  ( 2 5 )  

where K = 5 ( 2 )  - 1 = 0.644 93 . . . (reasonably close to y = 0.577 21 . . . which appears 
in the continuum version (Larsen 1977, 1986b, Riess and Ron 1973), which has an 
integral over r instead of the sum over k ) .  

For such a i model (21 )  and (25 )  produce the guess 

( 2 6 )  
1 

2ecJo(-K -In c ) ” ~  
max w ( x )  2 

for c + 0. Such a sharp peak in the eigenvalue density would imply that the present 
matrix ensemble is a remarkable object, worthy of a closer study. 

From the physical viewpoint the fundamental issue in the present context is that 
of quenched randomness. As first emphasised by Anderson (1978), quenched random- 
ness presents problems of a kind which cannot be solved by conventional statistical 
reasoning, Although, of course, ergodicity is axiomatic in conventional physical 
statistics, the condition of quenching eliminates this axiom. Therefore self-averaging 
becomes a major attraction in mathematical objects pertaining to unique quenched 
specimens and corresponds to what is termed ‘matrix ergodicity’ in the theory of 
random matrices. But it cannot be taken for granted a priori. 

Whereas the unique specimen investigated may have originated historically, so to 
speak, out of random processes, which did, at the time, admit ergodicity, quenching 
‘freezes’ at least some of the degrees of freedom involved in this motion. The situation 
thereafter becomes characterised by static ‘disorder’. Quenching may be likened to 
the cinematographical process of ‘stop action’. In fact, it almost always relies on the 
extremely strong temperature dependence of the timescales for the freezing degrees of 
freedom so that rapid cooling, more or less instantaneously, stops the flow of time in 
the areas concerned. 

It is thus better to emphasise that the resulting disorder, or quenched randomness, 
presents problems inherently much more difficult than those arising in ‘ordered’ 
structures, insofar as what makes the latter tractable is a high degree of symmetry. At 
the present stage it is no exaggeration to claim that every rigorous result that can be 
obtained for quenched random situations is inherently interesting. 

From the mathematical viewpoint we are concerned with random-matrix ensembles 
in which the matrix elements in each ensemble member may not be statistically 
independent random variables. As far as we are aware, little, if anything, is known 
about such ensembles. Not all spin glass models have this complication. The models 
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most frequently investigated (Edwards- Anderson or Sherrington- Kirkpatrick models) 
are designed to avoid it. On the other hand, in the more realistic R K K Y  interaction 
models the matrix elements are dependent, because the disorder is due to spin-position 
quenched randomness, with the interaction depending in a regular way on the space 
distance between spin pairs. 

We have defined so-called quenched p-norms (cf appendix 2) of which at least the 
quenched 2-norm appears to be relevant both physically (as the energy scale) and 
mathematically (for instance, in the random matrix context). Possibly it is their first 
appearance. 

Our first inequality (theorem 1) is general and sets upper and lower bounds on the 
quenched 2-norm in terms of the more conventional ergodic 2-norm (essentially the 
Euclidean or Hilbert-Schmidt norm) and the determinant. 

The second inequality (theorem 2) relates various ensemble means of the norms 
and the eigenvalue density for general random matrix ensembles. It is not assumed 
that the matrix elements are independent. In particular, the ensemble mean of the 
quenched 2-norm provides a lower bound on the maximum value of the eigenvalue 
density. According to our estimates, this implies a sharp central peak in the eigenvalue 
density for the R K K Y  spin glass random matrix ensemble. Provided this feature is 
confirmed it implies that this ensemble possesses unusual mathematical properties, 
which presumably may be due to the correlation between the matrix elements. 

Our estimates concerning the c dependence of some of the quantities, such as the 
quenched norm, are not claimed to be exact. They are guided by physical considerations 
and numerical computations and are the best that are available at present. In particular 
(cf appendix l ) ,  we have clarified the phenomenon of broken space dilatation invariance 
for these estimates. 

Appendix 1.  Remarks on space dilatation 

Consider a space dilatation, in which the volume and the configuration of spin positions 
is kept fixed, while a,-, Aa,. Then J,, = i J 0 ( R , / a o ) - 3 +  A'J,,. Originally the idea was 
to explain the c scaling expressed in (3) by observing that, after this dilatation, the 
situation would correspond to a fractional concentration A3c. If it is assumed that this 
implies dilatation invariance, then A ' g (  c )  = g( A 3c). From this one would infer g (  c)  cc c, 
as suggested by the original form (3) in which c scaling was observed. 

However, as we have pointed out (Larsen 1977, 1986a, b),  dilatation invariance is 
not exact. The reason need not be that there is some physical length scale, not included 
in the present model (in practice there are such length scales (Larsen 1977, 1986b) 
but it is interesting to consider the present invariant Hamiltonian). Rather, it is the 
space distribution of spin positions which does not remain random after a dilatation. 
Suppose A < 1. Then the original configuration, which has no pairs closer than a,, 
cannot be random under the new conditions because it lacks pairs as close as Aa,, 
which would occur in a random configuration (Larsen 1986b). Therefore, whereas it 
is true that the energy scale must become A ' g ( c ) ,  the number A'c is not the fractional 
concentration of a random configuration under the new circumstances. It is the 
concentration of a position distribution with anticlustering. The dilatation takes the 
original model out of the ensemble of randomly constructed J and therefore the energy 
scale A3g( c)  is not what would be denoted by g at the new concentration. The question 
is, therefore, to what extent the true energy scale g is a functional which is sensitive 
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to this close pair effect. If it is not, then g ( c ) a  c would remain a good approximation. 
On the other hand, it is clear that such a functional as / IJ / le rgodic  is very sensitive to 
close pairs, which is the reason it is a & .  An illustration was given in Larsen (1977, 
1986b). The quenched norm appears to be only marginally sensitive, to judge from 
the logarithmic form of our estimate (10). 

These norms have peculiar properties for point-like spins. Let p = 3 N,/4.rrR3 = 
3c/4.rrai be the space density, which is to be kept constant as ao+O and c - 0  in 
conjunction. Also, to let Ji, be a function of absolute distance, let Jo = ( a /  U ~ ) ~ J ; ,  where 
both a and J ;  are to remain constant. Since, for any norm, IlA J(I = IA 1 / /  J 11, this supplies 
a factor ( u / u , ) ~ J ; .  The norms whose leading c + 0 term is c will be proportional to p 
in the point limit. The ensemble means of both the ergodic and (by estimate) the 
quenched norms, with stronger c+O terms, diverge. This exotic feature is due to the 
divergent form of J (  R )  at R + 0, which renders J unbounded if it has an infinitesimally 
close pair. The number of ao-close pairs, N,c, becomes zero as c+O for fixed N , .  
Nevertheless, the distribution over the ensemble of these norms has no finite mean, 
due to the members which happen to have O+-close pairs. The same effect is apparent 
in a given J in the limit N,+  Co. Of course, the use of the pair correlation in IIJllergodic 
presupposes one or the other of these conditions. The remaining option for the point 
limit, the norm whose ensemble mean is a c ,  agrees with the dilatation invariant g( c) Cc c, 
since, for point spins, the random position distribution has now been divorced from 
the running length scale a,. But we do not know what it may be, expressed in terms 
of the elements Jv (however, cf appendix 2). 

In a similar way it must be concluded that w(x) is not strictly dilatation invariant, 
due to the missing close pairs that should maintain its spectral range when A < 1. 
However, if we assume that at least the small eigenvalues are not sensitive to close 
pairs, then at 1x1 -- 0 we expect the number of eigenvalues in 1x1 s dx with w(x) = w,(x) 
to equal the number in 1x1 S A 3  dx with the dilated wA3c(x). Thus, at x = O ,  A 3 ~ A 3 c ( ~ )  = 
WAX).  This implies wc(0)a l /c .  Interestingly, it is precisely what is needed to 
accommodate max w(x) within a marginally modified lower bound, such as (26 ) ,  and 
is therefore consistent with our estimate of ( 1 1  J I( quenched). 

Appendix 2. Quenched norms 

It suggests itself to define the class of quenched p-norms ( p  2 1) 

which are norms by 

by the Minkowski inequality (Beckenbach and Bellman 1983). If A is not Hermitian 
there would be a dual set analogously defined. Thus llAllquenched= llA1I2. By the 
concavity of xl” for p 3 1 each quenched p-norm is less than the corresponding ergodic 
p-norm: ( ( l / n )  XI,, laI,lP)’IP (equality iff all x, = (2, la,Jlp)l’p are equal). 
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For the spin glass matrix ensemble we have no numerical evaluation, aside from 
the case p = 2. With appropriate reservations, it is instructive to estimate the quenched 
p-norms by means of the typical neighbour density { p p ) } .  Thus, in the * model, 

(llJ1lp)p::=~Jg C [ l  - ( l - ~ ) ~ - - ’ ] / k ” .  
k = l  

This gives rise to the Lerch transcendent or Joncquikre function, of which the Euler 
dilogarithm is the special case for p = 2. As there is no standard relation comparable 
to the one usedt for p = 2, let us proceed with the continuum version. To have 
exactly one spin excluded by the lacuna, one must design from pip’ the density 

with 5 = c/(  1 - c), which is easily verified by direct integration of the lacuna subtraction. 
Of course, this 5 agrees with - ln( l -  c) at c+O. Thus we estimate 

A partial integration gives 

For integer p = 2 , 3 , .  . . , there are logarithmic factors, such as was shown for p = 2. 
When p is not an integer we find from the standard expansion of the incomplete 
gamma function, for c+O, the leading terms 

for l < p < 2  

for p > 2, p f 3,4,  . . . 
( II J II p )  := 

whereas, for instance, for p = 2  we find (IIJII2):= ~ J ~ [ - y - l n ( c ) ] ’ ~ ~ .  
It is interesting to note that this estimate, for p < 2, agrees with the estimate of 

g( c) Cc c based on the assumption of dilatation invariance. It must be presumed that, 
while dilatation invariance is not exact, the quenched norms with 1 < p  < 2 are not 
sensitive to close pairs. On the other hand, at p > 2 they apparently are sensitive, as 
one would expect, and the ergodic norms, which are C ~ C ” ~ ,  are even more sensitive. 
The physically interesting case of p = 2 is therefore apparently marginal and has only 
a weak logarithmic correction to the dilatation invariance linear c scaling. It is 
emphasised that these particular results are preliminary estimates of c dependences 
for which a rigorous analysis would be desirable. 

t For integer p the relation which transforms the argument 1 - c + c can be expressed in terms of the Nielsen 
generalised polylogarithms (Kolbig 1986). Unfortunately, these useful functions are not included in the 
standard reference works, apart from the specialisation to the dilogarithm (the case p = 2) .  In this way one 
can obtain the c + 0 expansion, including the logarithmic correction occurring in one of the non-leading 
terms (the leading one when p = 2). We shall not display these results, as they are quite analogous to what 
will be obtained from the continuum version of the estimate, and because we would still be short of the 
means to treat the cases when p is not an integer. 
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Appendix 3. Remarks on the range of the R K K Y  interaction 

Some time ago we pointed out (Larsen 1977, 1978) that, in the metallic spin glass 
alloys, there is a clear correlation between the electrical resistivity and the R K K Y  

interaction energy scale: the larger the resistivity, the smaller is g( c ) .  This correlation 
is seen in the freezing temperature To,  as well as in other quantities that reflect g ( c ) .  
The simplest way to explain it is to recognise that electrons meeting resistance will 
sustain the R K K Y  interaction (2) only over a finite range-a phenomenon referred to 
as damping. The evidence in favour of this explanation is substantial (Larsen 1986b 
and references therein), despite occasional dissent. 

Some recent work (de ChBtel 1981, Zuyzin and Spivak 1986, Bulaevskii and 
Panyukov 1986, Jagannathan et al 1987) calls into question whether the R K K Y  interac- 
tion can become of finite range under certain circumstances. As we do ourselves 
(Larsen 1986b, cf footnote 2 2 ) ,  these authors also see a possible difficulty with a model 
based on elastic scattering of conduction electrons. The RKKY interaction may not 
become damped unless one averages over the scattering centre positions. Such averag- 
ing does not take place in reality. The scattering centres are at quenched random 
positions, just like the spins. 

However, these investigators fail to recognise that this particular model by no means 
represents a necessary condition for a finite range. Indeed, for some time there has 
existed an alternative model (Kaneyoshi 1975) which does not rely on such an artificial 
averaging device and which, nevertheless, does show the damping effect. This model 
simply assumes that, in the presence of disorder, plane waves are not stationary states, 
but have a finite lifetime. The spectral density is taken to be the Breit-Wigner 
Lorentzian, which can be obtained in a number of elementary ways having nothing to 
do with position averaging. The reality is surely more complicated, but this is adequate 
as a one-parameter beginning. Its RKKY interaction can be calculated exactly 
(Kanayoshi 1975, Larsen 1985). This model has been tested critically and extensively 
against the experimental evidence (Larsen 1977, 1978, 1986b). No disagreement of 
any substance has been found as yet and the model accounts for a considerable amount 
of experimental detail. An interesting recent observation (Vier and Schultz 1985) can 
even be said to have been predicted by it (Larsen 1986b). 

Damping of the R K K Y  interaction is just as universal as resistivity in the conduction 
electrons that sustain it. So obviously it is simplest to presume that both are caused 
by the same kind of dissipation. That is to say, both phenomena are due to irreversibility. 
But averaging over scattering centre positions is, rather, a technical device. It should 
only be used to simulate a dissipative environment, in the fashion of the well known 
random phase construction. Actually the dissipation takes place by excitation of 
degrees of freedom with an essentially continuous spectrum. One may presume that 
disorder (partly) causes the existence of such degrees of freedom and that electronic 
collisions are responsible for their excitation. 

In ordered lattices the same thing happens when electrons excite phonons. Some 
such mechanism is always necessary in order to have resistivity, seen as an irreversible 
phenomenon, whereas if such excitations are ruled out (by an energy gap and/or low 
temperature) the resistive dissipation does not take place. Even though elastic scattering 
as usual accounts for the electronic band structure in crystals. 

In disordered structures the continuous spectrum probably has more strength at 
low energies-corresponding to excitations which may not be phonon-like. For this 
reason resistive dissipation may not be frozen out at low temperatures, which explains 
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why the low-temperature resistance is much larger in disordered systems than in 
crystalline ones. There seems to be every reason to presume that the observed damping 
of the R K K Y  interaction is due to the same cause. 

It so happens that the technical averaging over scattering centre positions may 
simulate this effect. But the question is really whether or not the electron self-energy 
has a non-zero imaginary part. To have it, one needs irreversible dissipation, and  then 
there will be both resistivity and damping. In this respect the dissipative model is 
analogous to the well known optical model in nuclear physics (Bohr and Mottelson 
1969). Otherwise one has a reversible quantum mechanics, even if the wavefunctions 
correspond to a disorderly potential with no  resistivity and a long-range R K K Y  interac- 
tion too, according to recent reports. However interesting it is on its own account, the 
disorderly potential model suffices no more than models of electron propagation in 
periodic potentials to explain the irreversibilities that are observed in real systems. 
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